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Abstract 
A case-study of efforts of three students trying to learn mathematical analysis is described. 
Concepts of concept image, concept definition, procept and encapsulation are used to 
support the didactical strategy adopted. This strategy emphasized the propositional calculus 
with explicit applications of the four rules of inference in such a way as to submit the concept 
image to the control of the concept definition, aiming at the encapsulation of the ε−δ 
discourse. A detailed example is provided. Effects of the learning efforts on the students and 
on the faculty are discussed.  

The research question 
This paper describes a case study developed jointly by one teacher, two 

undergraduate students in a teacher training program and one graduate student in a 
Mathematics Education program. The word analysis refers basically to the definition of limit 
and the construction of the real numbers. The expression learn analysis refers to the 
encapsulation of a particular process as an object. "Average student" refers to the students' 
self evaluation; they ranked themselves in the second quarter of their classes and in the 
second group described by Pinto & Gray [1995, p. 2-25]. Among equally ranked peers, 
they detected widespread rote learning. The directive research question emerged naturally 
from their dissatisfaction and desires: can the average student like us learn analysis, or is 
this subject reserved only for the so-called “gifted” ones?  
Methodology  

The group met once a week for three hours throughout 1996. The activity was part of 
an honors fellowship project for one of the undergraduate students, a chance to improve 
learning for the other, and an opportunity to review basic mathematical concepts for the 
graduate student. In the first meeting, methodology with respect to subject-matter, 
didactical strategy, meta-cognition and evaluation was established. Negotiation proceeded 
throughout the year.  

The subject matter was dictated by the syllabus and homework of a regular one-year 
mathematical analysis course that the undergraduate students were taking from another 
teacher. In the second semester, the group decided to concentrate on a single subject: the 
construction of real numbers. This subject had come up several times in the first semester. 
The teacher suggested to taking Cauchy sequence approach in order to boost 
opportunities to work with epsilons and deltas. The only available Portuguese language  
source that describes the construction in detail happens to contain a mistake in the  proof 
of the fundamental theorem on the completeness of the real numbers. A task was 
proposed to the group: in this chapter there is a mistake; find it, give a counter example 
and produce a correct proof.  

A didactical strategy was chosen: instead of looking for a smooth transition from the 
intuitive to the formal level, a radicalization of the cut between concept image and concept 
definition should be tried, by training the students in semi-formal treatment of propositional 
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calculus. The four rules of inference - universal and existential particularization and 
generalization were to be spelled out and systematically used. 

Discussions about meta-learning and meta-teaching were carried out at the end of 
each session. They concerned the difficulties and progress of each student and the overall 
evaluation of the day's work. Some sessions of the first semester and all sessions of the 
second semester were videotaped. Some videos were viewed and discussed by the 
students. The way the teacher conducted the sessions and the adequacy, aim and effects 
of his interventions were analyzed and adjusted as the year progressed.  

As for evaluation, the group agreed that a final research report should be submitted to 
PME-21 and  partial results should be presented in local meetings during the year. In the 
beginning of the second semester, the undergraduate honor student was scheduled to 
present a purely mathematical report to her peer group and their program advisor at the 
end of the year. The performance of the undergraduate students in exams of the regular 
analysis course were also to be observed. 
The theoretical framework 

It was agreed that the theoretical framework to interpret data should be the 
conceptualization developed by the Advanced Mathematical Thinking group of PME: 
concept image, concept definition, conflict factor [Tall & Vinner, 1981], process, concept, 
procept, ambiguity process-product, encapsulation [Gray and Tall, 1994]. Coincidentally  
the research subject matched that of Pinto & Gray [1995] and Pinto & Tall [1996]; namely, 
students' misconceptions about limits, rational and real numbers, and the use of formal 
definitions. The difference is that these authors seek to investigate the students' existing 
state of knowledge and institutional conditions, while the present research tries to produce 
a change in the state of knowledge and to investigate the outcomes and feasibility of such 
an attempt. It should be qualified as a case study within an action-research approach.   
The didactical strategy: "1/n XPTO 0" 

In this section, the necessity of a didactical strategy that emphasizes the discontinuity 
between concept image and concept definition will be justified. Next, a fairly detailed 
description of the particular elementary procept that supports this strategy will be 
presented. Finally, a certain ambiguity of process-concept will be described as the 
expression of advanced mathematical thinking in analysis and will be described in terms of 
encapsulation.  

The didactical strategy of continuity. The undergraduate students had been exposed 
to the "intuitive definition" of limit in calculus courses, and the graduate student had also 
been exposed to the "formal definition" in an analysis course similar to the one that the 
undergraduate students were taking. In the students' own opinion, they "attempted to learn 
definitions by rote  but in the main failed to understand the underlying concepts" [Pinto & Gray, 
1995, p. 2-18]. Work with them the year before [Leal et al, 1996] had produced evidence 
that they shared most of the "observed errors" about limits pointed out by Davis & Vinner 
[1986, p. 294]. These authors formulate a major question about misconceptions: "Is there a 
way to teach these concepts so that misleading images will not be formed? Or are these "naive" 
images unavoidable and will be formed no matter how the concept is taught?" [p. 285]. We add: 
what to do if they are already formed? According to the authors,  influence of language is 
one of the sources of misconceptions about limits [p. 298]. Words such as "limit" have 
undue connotations, either inside or outside mathematics. In order to avoid them, Davis & 
Vinner report having tried unsuccessfully, or at least without clear success, to postpone the 
introduction not only of the concept definition, but also of the very word "limit". "The word 



limit was not introduced until after the correct mathematical concept was seemingly well 
established" [Davis & Winner, 1986, p. 299]. Postponing the concept definition until a 
reliable concept image can be formed is the same strategy pointed out by Tall & Vinner 
[1981] in the SMSP: 

"(...) in the SMSP (...) the concept images of limits and continuity are carefully built up over 
the two years of the course with fairly formal concept definitions only being given at the very end. 
In this way the concept image is intended to lead naturally to the concept definition" [Tall & Vinner, 
1981, p. 155]. 

We shall call such attempts the didactical strategy of continuity. It consists of seeking  
a natural transition form the concept image to the concept definition of limit by painstakingly 
expanding and adjusting the concept image so that it can accommodate the concept 
definition.  

Difficulties with the didactical strategy of continuity. Since continuity strategies are 
dominant in almost any textbook on calculus or analysis, we may trust that they are  
associated with, if not the cause of:  

"(...) the almost insignificant effect that a course on analysis had in changing the quality of 
mathematical thinking of a group of students (...). (...) despite their extensive work with real 
numbers, their concept image had not expanded to take in the concept definition" [Pinto & Gray, 
1995, p. 2-18, our emphasis]. 

In the first meeting, the students expressed their understanding of the formal 
definition of limit with the following phrase: "For any epsilon there is an N, starting from 
which the sequence converges". The teacher asked: "Do you mean that before this N the 
sequence might diverge?". As the discussion progressed, the students ran into several 
contradictions, but the game "someone gives you an epsilon and you have to find an N 
such that" appeared to them to be an arbitrary caprice of the teacher. The persistence of 
the above phrase indicated that the students were trying to graft the concept definition onto 
the concept image. They were calculating limits correctly, and  propositions such as "the 
limit of the product of a bounded sequence by a sequence converging to zero is zero" 
seemed  completely obvious to them. When asked to produce a formal proof, they mixed 
phrases from their concept images with phrases from the concept definition. They soon 
started referring to bounded variables outside the formulas where they had been 
introduced. Whenever they referred to "this epsilon" in a formula such that ∀ε P( )ε , the 
teacher replied: "I see no epsilon on this black-board", and replaced the epsilon with  
another symbol, attempting to show that the meaning of the proposition remained 
unchanged. This elicited some astonishment among the students but no positive effects. 
The situation is well described as a potential conflict factor in Tall & Vinner [1981]: 

“A more serious type of potential conflict factor is one in which the concept image is at 
variance not with another part of the concept image but with the formal concept itself. Such factors 
can seriously impede the learning of a formal theory, for they cannot become actual cognitive 
conflict factors unless the formal concept definition develops a concept image which can then 
yield a cognitive conflict. Students having such a potential conflict factor in their concept image 
may be secure in their own interpretations of the notions concerned and simply regard the formal 
theory as inoperative and superfluous” [Tall & Vinner, 1981, p. 154, our emphasis]. 

The teacher made an effort to emphasize the role of definitions in mathematics but 
his attempt was rebuffed. The students manifested their conception of "definition" as a 
"complete description" of an object. For them, the definition of limit was simply intended to 
make the idea of limit "more precise". Asked to choose a couple of similar notions among 



definition, theorem, and axiom, they did not hesitate in uniting definition with either axiom 
or theorem. "The everyday life thought habits take over and the respondent is unaware of the need 
to consult the formal definition. Needless to say that, in most cases, the reference to the concept 
image cell will be quite successful. This fact does not encourage people to refer to the concept 
definition cell" [Vinner, 1991, p. 73]. The teacher tried to emphasize the arbitrary character 
of definitions: “Definitions are arbitrary. Definitions are “man made”. Defining in mathematics is 
giving a name” [Vinner, 1991, p. 66, our emphasis]. However, the comparison of definition 
to the ritual of baptism made the students laugh a lot.   

Rupture of concept image and concept definition. It seems that looking for a 
continuous transition such that the concept image would be progressively adjusted and 
would terminate by incorporating the concept definition leads to difficulties already 
recognized by Vinner [1991]: 

"Only non-routine problems, in which incomplete concept images might be misleading, can 
encourage people to refer to the concept definition. Such problems are rare and, when given to 
students, considered as unfair. Thus, there is no apparent force which can change the common 
thought habits which are, in principle, inappropriate for technical contexts" [Vinner, 1991, p. 73, 
our emphasis]. 

If there is "no apparent force", how to unbalance students' notions? The answer to 
this question may be found in a previous paper by the same author:  "(...) unless the formal 
concept definition develops a concept image which can then yield a cognitive conflict" [Tall & 
Vinner, 1981, p. 154]. At this point the notion of concept definition image comes in: "For 
each individual a concept definition generates its own concept image (...) which might (...) be called 
the “concept definition image” [Tall & Vinner, 1981, p. 153]. The question now becomes: how 
to make the concept definition image strong enough so that it acquires the power of 
redressing the whole concept image? The answer provided in this paper is: by stressing 
precise rules to manipulate the concept definition until an object is formed and 
simultaneously submitting the concept image to the control of the concept definition. This 
implies attributing an independent statute to the concept definition and introducing a 
rupture between concept image and concept definition.  

The new didactical strategy. Gray & Tall [1994] characterize advanced mathematical 
thinking as the possibility of ambiguous use of process and product evoked by the same 
symbol. As for limits, the process is the tendency towards the limit and the product is the 
value of the limit:   

“The notation lim ( )
x a

f x
→

 represents both the process of tending to a limit and the concept of 

the value of the limit, as does lim
n

ns
→∞

(...)" [Gray & Tall, 1994, p. 120, our emphasis].  

"We conjecture that the dual use of notation as process and concept enables the more able to 
“tame the process of mathematics into a state of subjection”; instead of having to cope consciously 
with the duality of concept and process, the good mathematician thinks ambiguously about the 
symbolism for product and process” [Gray & Tall, 1994, p. 121, our emphasis].   

The new didactical strategy consists of redefining process and product in the situation 
of limits, consequently aiming at another form of ambiguity. It starts recalling that the 
concept definition is a verbal form: “We shall regard the concept definition to be a form of words 
used to specify that concept” [Tall & Vinner, 1981, p. 152]. The process is then redefined as 
the sequence of inferences necessary to deal with the form of words used to specify the 
concept of limit (propositional calculus). The product is redefined as the demonstration, that 
is, the effect of truth of the discourse supported by such inferences. This means a shift of 



emphasis towards language, while keeping the same basic conceptualization of Advanced 
Mathematical Thinking.  

Precisely, according to the old ambiguity, the use of the symbol "lim1/n=0" meant 
either a tendency process or a final value. The new ambiguity consists in using this symbol 
to mean, either that for every epsilon we can find an N (the process), or that the proposition 
"lim1/n=0" is true; that is, it can be sustained (by an epsilontic discourse) in the forum of the 
mathematical community (product). Indeed, whenever a mathematician claims that 
something is trivial, as they like to do, s/he is not thinking about the "cognitive complexity 
process-concept" but is exercising this specific form of process-product ambiguity: s/he is 
ready to sustain a discourse in terms of a chain of propositions. The process of (epsilontic) 
discourse has been encapsulated as an object (claim). In order to be realized, such a 
strategy should provide the formation of an elementary procept leading to the construction 
of this specific object. 

 “An elementary procept is the amalgam of three components: a process that produces a 
mathematical object, and a symbol that represents either the process or the object” [Gray & Tall, 
1994, p. 121. authors' emphasis]. 

Having identified the process as the ε−δ discourse framed by the propositional 
calculus, the object became the referent produced by the discourse. Thus the aim of the 
didactical strategy of rupture was to attain the limit procept from the side of the concept 
definition. However, one point was missing: in order to complete the construction of the 
elementary procept, a symbol was necessary. The experience was that the old symbol 
lim an = L inevitably drew the students' attention towards the concept image. For them, 
"lim" was the signifier attached to the idea of tendency; "lim" was the name of the concept 
image. It was necessary to adopt a name for the concept definition. A neutral signifier was 
chosen to play a temporary role: XPTO. So a definition was made, and an exercise was 
proposed:  

" ( )a XPTO L means N n n N a Ln n∀ε ∃ ∀ > → − < ε . Show that 1 0
n

XPTO " 

It is necessary to stress that XPTO is not a new symbol for the limit; it is a new 
symbol for the definition. It is a name for the definition; not a name for the limit. It is a 
temporary signifier to be used, not while the concept image is not well established, but 
while the concept definition is not strong enough to rule the concept image. The effects of 
the brute force declaration of traditional analysis courses: "from now on " lim

n na L
→∞

=  means 

this epsilontic definition", have been negative on students. Of course, this is the desired 
form of the final ambiguity, but it cannot be attained by overt imposition4.  

"This has nothing to do with getting closer", explained the teacher. "That N that you 
have found was just a sketch. The proof starts now". He meant that the concept image had 
to be fully controlled and redressed in terms of the concept definition. An adaptation of 
Rosser [1953] made it possible to take full advantage of the propositional calculus without 
losing sight of the mathematical meaning of the propositions. The four inference rules were 
made explicit and connected to language models such as the classical syllogism. The 
students were required to shape every homework exercise of their analysis course into this 
final form. All proofs had first to be "sketched" and then "written down". Image and 
definition were connected but each domain had its independent validity criteria. What had 
to be proved was put as a question and surrounded by question-marks. This allowed the 
proof to proceed simultaneously, progressing from the hypothesis and regressing from the 
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thesis, allowing a step-by-step control of what remained to be proved. Concept image was 
evoked precisely at the moment that a constant had to be exhibited to answer a question 
introduced by the existential quantifier. Once the last question had been answered, the 
proof was complete. There was no need to rewrite it in affirmative terms. This strategy will 
be exemplified below, as it was presented by the students in a poster session of a work -
shop in May.   

Example of the XPTO strategy 
Convention: ε is a positive real variable, n e N are positive integer variables. Bars over letters 
introduce new variables, maintaining their respective restrictions.i 

 
 

Hypothesis: a XPTO
n b K
n

n

0
∀ ≤




  

 Thesis: a b XPTOn n 0   
 Proof:  Clarification for the reader  

 ? a b XPTOn n 0? From the definition we have to show that:  

 ? ?∀ε ∃ ∀ > <N n N a bn n ε  Once this question is answered, the proof is finished.  

 Take any ε    
? ?∃ ∀ > <N n N a bn n ε  

In order to show that ∀ε P( )ε  it suffices to take an 
arbitrary ε  and show that P( )ε . This rule is called 
existential generalization.  

 ∀ε ∃ ∀ > <N n N a n ε From the hypothesis, by definition.  

 
 

 
∃ ∀ > <N n N a

Kn
ε  Since ∀ε P( )ε  holds and since ε

K
> 0 , in particular 

P
K

( )ε  also holds.  This rule is called universal 

particularization; it is the form of the classical 
syllogism: every man is mortal, Socrates is a man, 
hence Socrates is mortal.  

 Let N be such that  

∀ > <n N an K
,

ε
 

Since ∃N P N( ) holds, we can count on a particular N  
such that P( N ). This rule is called existential 
particularization.  

  
? ?∀ > <n N a bn n ε  

Since, for such N  we have P( N ), we may conclude 
that ∃N P N( ) , answering the last question. This rule 
is called existential generalization.  

 Take any n N>     
? ?a bn n < ε  

By universal generalization, it suffices to answer the 
question for this n . 

 a b a b
K

Kn n n n= < =
ε

ε     From (9) and from the hypothesis, by universal 
particularization.  

 
Results and discussion 

The first question that should be asked is the following: did it work? The 
undergraduate students passed their analysis course, but this is not a reliable parameter; 
many who apparently ranked below them also passed. However the honor student made a 
mathematics-style exposition to another teacher in the mathematics department about the 
completeness of the real numbers defined in terms of equivalence classes of Cauchy 



sequences, which is a fairly involved ε−δ subject. "She was self-confident on that epsilontic 
stuff", he reported. On another occasion the students reported: "Now we know in which 
formula to enter with ε/3 and where to pick the δ from. When the teacher does it, we can 
follow her, but when she doesn't we can't avoid filling in the gaps." When the students were 
writing the final mathematical report to the honors program, they reported: "We had trouble 
refraining ourselves from applying the inference rules at every instance of the resumes of 
previous results that did not form part of the main body of the paper. Otherwise we would 
never end it." From such reports, it seems that they are playing with the ε−δ discourse as a 
new toy. They still cannot take it for granted and move on, but the encapsulation of the ε−δ 
discourse seems at its final phase. They only have to say "this is trivial", as mathematicians 
do.  

This is the final stage of a long process. The teacher led the students to complete 
some formal proofs of exercises that they had done in the analysis courses. They 
immediately recognized the power of the method and tried to imitate it. However, at the 
beginning the students tried to use the inference rules prematurely, before the sketch had 
sufficiently been worked out. In the meetings, several times the students lost sight of the 
sketch at the very end of the formal proof, and the whole story had to be repeated. Some 
sessions lasted for more than three hours. At a certain moment, in June, the teacher 
requested: "Forget about the formal proofs for the next three weeks and concentrate on the 
sketches". At that moment it was not clear that the strategy would work. 

Of course, it can be argued that if the same time and effort had been dedicated to the 
classical continuity strategy, the same result would have been attained. However the story 
of this case shows that such a strategy had failed before, and it would have been difficult 
for the students to find affective energy to engage in it. On the other hand, the XPTO 
worked not only as a symbol for the ε−δ definition but also as a brand for the group. When 
the students first showed the strategy in a poster session of a workshop for students and 
faculty, despite their efforts to the contrary, some faculty members received the XPTO as 
an unnecessary new symbol for the limit. A concealed similar point of view was also 
expressed by some of their colleagues. This made them angry. They believed in what they 
were doing and they wanted to show it to people. They felt they were the pioneers of the 
new strategy, not the underdogs of the old one. This was the affective energy that 
motivated them throughout the year.  

The students evaluated the attitude of such faculty members. "They looked irritated at 
the XPTO. It seems they do not want to take into account that students may have 
difficulties in analysis" one of them said. Later in the year, a video of one of the sessions 
was shown to the teacher of the analysis course. Her first reaction was: "But this cannot be 
done in a regular classroom". The students connected this episode with the first and 
concluded: "If our strategy works, they seem to feel obliged to use to it. This is a threat to 
their old habits". 

Actually, up to the end of October the encapsulation of the inference rules into a 
single object had not occurred. The existential particularization had simply been 
abandoned in several proofs. The connection of the rules with everyday language 
situations had been lost. The concept image was getting loose and recovering control over 
the concept definition. At this moment, the teacher calmly reminded the students: "Next 
month you are going to expose this to the faculty. They will certainly ask you about the 
apologetic poster session of last May when you claimed that these rules were so important. 
What are you going to answer?" He suggested: "Perhaps you should tell them that our 



strategy did not work and make a traditional mathematical exposition as they like you to 
do". 

This remark had a decisive effect. The students started scheduling appointments 
among themselves in order to prepare for the exposition. The fact that they could not trust 
the book but, on the contrary, had to find a mistake in it, made them to become 
independent from the teacher. They assumed that the fight for understanding and making 
themselves understood was theirs. The demand produced by this kind of situation is well 
known to everyone who has learned mathematics. So it can certainly be argued that all that 
the XPTO strategy did was to install a certain pressure. We agree. But, was there any 
other way to do it?   
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i Theorem VI.4.2. If P1, P2, ... , Pn, Q, are statements, not necessarily distinct, and x is a variable 
which has no free occurrences in any of  P1, P2, ... , Pn, and if P1, P2, ... , Pn, Ã Q, then 
P2, ... , Pn, Ã  (x) Q  [Rosser, 1953, p. 106].Theorem VI.6.8. Let x and y be variables and P and Q 
be statements. Let Q be the result of replacing all free occurrences of x in P by occurrences of y and 
P be the result of replacing all free occurrences of y in Q by occurrences of x. Then: 
Ã (x) F(x) ≡ (y) F(y) [Rosser, 1953, p. 121]. 


